Combination drug scheduling defines a "window of opportunity" for chemopotentiation of gemcitabine by an orally bioavailable, selective ChK1 inhibitor, GNE-900.
نویسندگان
چکیده
Checkpoint kinase 1 (ChK1) is a serine/threonine kinase that functions as a central mediator of the intra-S and G2-M cell-cycle checkpoints. Following DNA damage or replication stress, ChK1-mediated phosphorylation of downstream effectors delays cell-cycle progression so that the damaged genome can be repaired. As a therapeutic strategy, inhibition of ChK1 should potentiate the antitumor effect of chemotherapeutic agents by inactivating the postreplication checkpoint, causing premature entry into mitosis with damaged DNA resulting in mitotic catastrophe. Here, we describe the characterization of GNE-900, an ATP-competitive, selective, and orally bioavailable ChK1 inhibitor. In combination with chemotherapeutic agents, GNE-900 sustains ATR/ATM signaling, enhances DNA damage, and induces apoptotic cell death. The kinetics of checkpoint abrogation seems to be more rapid in p53-mutant cells, resulting in premature mitotic entry and/or accelerated cell death. Importantly, we show that GNE-900 has little single-agent activity in the absence of chemotherapy and does not grossly potentiate the cytotoxicity of gemcitabine in normal bone marrow cells. In vivo scheduling studies show that optimal administration of the ChK1 inhibitor requires a defined lag between gemcitabine and GNE-900 administration. On the refined combination treatment schedule, gemcitabine's antitumor activity against chemotolerant xenografts is significantly enhanced and dose-dependent exacerbation of DNA damage correlates with extent of tumor growth inhibition. In summary, we show that in vivo potentiation of gemcitabine activity is mechanism based, with optimal efficacy observed when S-phase arrest and release is followed by checkpoint abrogation with a ChK1 inhibitor.
منابع مشابه
Identification of preferred chemotherapeutics for combining with a CHK1 inhibitor.
Here we report that GNE-783, a novel checkpoint kinase-1 (CHK1) inhibitor, enhances the activity of gemcitabine by disabling the S- and G2 cell-cycle checkpoints following DNA damage. Using a focused library of 51 DNA-damaging agents, we undertook a systematic screen using three different cell lines to determine which chemotherapeutics have their activity enhanced when combined with GNE-783. We...
متن کاملSmall Molecule Therapeutics Identificationof PreferredChemotherapeutics forCombining with a CHK1 Inhibitor
Here we report that GNE-783, a novel checkpoint kinase-1 (CHK1) inhibitor, enhances the activity of gemcitabine by disabling the SandG2 cell-cycle checkpoints followingDNAdamage. Using a focused library of 51 DNA-damaging agents, we undertook a systematic screen using three different cell lines to determine which chemotherapeutics have their activity enhanced when combined with GNE-783. We foun...
متن کاملDiscovery of 3-Alkoxyamino-5-(pyridin-2-ylamino)pyrazine-2-carbonitriles as Selective, Orally Bioavailable CHK1 Inhibitors
Inhibitors of checkpoint kinase 1 (CHK1) are of current interest as potential antitumor agents, but the most advanced inhibitor series reported to date are not orally bioavailable. A novel series of potent and orally bioavailable 3-alkoxyamino-5-(pyridin-2-ylamino)pyrazine-2-carbonitrile CHK1 inhibitors was generated by hybridization of two lead scaffolds derived from fragment-based drug design...
متن کاملInhibition of Chk1 with the small molecule inhibitor V158411 induces DNA damage and cell death in an unperturbed S-phase
Chk1 kinase is a critical component of the DNA damage response checkpoint and Chk1 inhibitors are currently under clinical investigation. Chk1 suppresses oncogene-induced replication stress with Chk1 inhibitors demonstrating activity as a monotherapy in numerous cancer types. Understanding the mechanism by which Chk1 inhibitors induce DNA damage and cancer cell death is essential for their futu...
متن کاملChk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death
Activation of Checkpoint kinase 1 (Chk1) following DNA damage mediates cell cycle arrest to prevent cells with damaged DNA from entering mitosis. Here we provide a high-resolution analysis of cells as they undergo S- and G₂-checkpoint bypass in response to Chk1 inhibition with the selective Chk1 inhibitor GNE-783. Within 4-8 h of Chk1 inhibition following gemcitabine induced DNA damage, cells w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 12 10 شماره
صفحات -
تاریخ انتشار 2013